A Novel Regularization Based on the Error Function for Sparse RecoveryDownload PDFOpen Website

2020 (modified: 04 Nov 2022)CoRR 2020Readers: Everyone
Abstract: Regularization plays an important role in solving ill-posed problems by adding extra information about the desired solution, such as sparsity. Many regularization terms usually involve some vector norm, e.g., $L_1$ and $L_2$ norms. In this paper, we propose a novel regularization framework that uses the error function to approximate the unit step function. It can be considered as a surrogate function for the $L_0$ norm. The asymptotic behavior of the error function with respect to its intrinsic parameter indicates that the proposed regularization can approximate the standard $L_0$, $L_1$ norms as the parameter approaches to $0$ and $\infty,$ respectively. Statistically, it is also less biased than the $L_1$ approach. We then incorporate the error function into either a constrained or an unconstrained model when recovering a sparse signal from an under-determined linear system. Computationally, both problems can be solved via an iterative reweighted $L_1$ (IRL1) algorithm with guaranteed convergence. A large number of experimental results demonstrate that the proposed approach outperforms the state-of-the-art methods in various sparse recovery scenarios.
0 Replies

Loading