Keywords: Retrieval-augmented generation, Duality, Large Language Models
TL;DR: This paper provides the essential understanding of benefit and detriment in RAG to make them interpretable, quantifiable, and comparable.
Abstract: Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs). Studies show that while RAG provides valuable external information (benefit), it may also mislead LLMs (detriment) with noisy or incorrect retrieved texts. Although many existing methods attempt to preserve benefit and avoid detriment, they lack a theoretical explanation for RAG. The benefit and detriment in the next token prediction of RAG remain a 'black box' that cannot be quantified or compared in an explainable manner, so existing methods are data-driven, need additional utility evaluators or post-hoc. This paper takes the first step towards providing a theory to explain and trade off the benefit and detriment in RAG. We model RAG as the fusion between distributions of LLMs’ knowledge and distributions of retrieved texts. Then, we formalize the trade-off between the value of external knowledge (benefit) and its potential risk of misleading LLMs (detriment) in next token prediction of RAG by distribution difference in this fusion. Finally, we prove that the actual effect of RAG on the token, which is the comparison between benefit and detriment, can be predicted without any training or accessing the utility of retrieval. Based on our theory, we propose a practical novel method, Tok-RAG, which achieves collaborative generation between the pure LLM and RAG at token level to preserve benefit and avoid detriment. Experiments in real-world tasks using LLMs such as OPT, LLaMA-2, and Mistral show the effectiveness of our method and support our theoretical findings. Code is in supplemental material and will be released on GitHub after acceptance.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5411
Loading