Sharper Error Bounds in Late Fusion Multi-view Clustering with Eigenvalue Proportion Optimization

Published: 01 Jan 2025, Last Modified: 05 Aug 2025AAAI 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Multi-view clustering (MVC) aims to integrate complementary information from multiple views to enhance clustering performance. Late Fusion Multi-View Clustering (LFMVC) has shown promise by synthesizing diverse clustering results into a unified consensus. However, current LFMVC methods struggle with noisy and redundant partitions and often fail to capture high-order correlations across views. To address these limitations, we present a novel theoretical framework for analyzing the generalization error bounds of multiple kernel k-means, leveraging local Rademacher complexity and principal eigenvalue proportions. Our analysis establishes a convergence rate of O(1/n), significantly improving upon the existing rate in the order of O(sqrt(k/n)). Building on this insight, we propose a low-pass graph filtering strategy within a multiple linear K-means framework to mitigate noise and redundancy, further refining the principal eigenvalue proportion and enhancing clustering accuracy. Experimental results on benchmark datasets confirm that our approach outperforms state-of-the-art methods in clustering performance and robustness.
Loading