An information theoretic treatment of sequence-to-expression modelingDownload PDFOpen Website

Published: 01 Jan 2018, Last Modified: 17 May 2023PLoS Comput. Biol. 2018Readers: Everyone
Abstract: Author summary In-depth studies of gene regulatory mechanisms employ a variety of experimental approaches such as identifying a gene’s enhancer(s) and testing its variants through reporter assays, followed by transcription factor mis-expression or knockouts, site mutagenesis, etc. The biologist is often faced with the challenging problem of selecting the ideal next experiment to perform so that its results provide novel mechanistic insights, and has to rely on their intuition about what is currently known on the topic and which experiments may add to that knowledge. We seek to make this intuition-based process more systematic, by borrowing ideas from the mature statistical field of experiment design. Towards this goal, we use the language of mathematical models to formally describe what is known about a gene’s regulatory mechanisms, and how an experiment’s results enhance that knowledge. We use information theoretic ideas to assign a ‘value’ to an experiment as well as explain objectively what is learned from that experiment. We demonstrate use of this novel approach on two extensively studied developmental genes in fruitfly. We expect our work to lead to systematic strategies for selecting the most informative experiments in a study of gene regulation.
0 Replies

Loading