RL4CO: a Unified Reinforcement Learning for Combinatorial Optimization Library

24 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Reinforcement Learning, Neural Combinatorial Optimization, Combinatorial Optimization, Library, Benchmark
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: RL4CO: a Reinforcement Learning for Combinatorial Optimization library with a focus on standardized implementation and evaluation techniques
Abstract: Deep reinforcement learning offers notable benefits in addressing combinatorial problems over traditional solvers, reducing the reliance on domain-specific knowledge and expert solutions, and improving computational efficiency. Despite the recent surge in interest in neural combinatorial optimization, practitioners often do not have access to a standardized code base. Moreover, different algorithms are frequently based on fragmentized implementations that hinder reproducibility and fair comparison. To address these challenges, we introduce RL4CO, a unified Reinforcement Learning (RL) for Combinatorial Optimization (CO) library. We employ state-of-the-art software and best practices in implementation, such as modularity and configuration management, to be flexible, easily modifiable, and extensible by researchers. Thanks to our unified codebase, we benchmark baseline RL solvers with different evaluation schemes on zero-shot performance, generalization, and adaptability on diverse tasks. Notably, we find that some recent methods may fall behind their predecessors depending on the evaluation settings. We hope RL4CO will encourage the exploration of novel solutions to complex real-world tasks, allowing the community to compare with existing methods through a unified framework that decouples the science from software engineering. We open-source our library at https://anonymous.4open.science/r/rl4co-iclr.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9212
Loading