From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Model, Time Series Forecasting, AI Agent
Abstract: This paper introduces a novel approach that leverages Large Language Models (LLMs) and Generative Agents to enhance time series forecasting by reasoning across both text and time series data. With language as a medium, our method adaptively integrates social events into forecasting models, aligning news content with time series fluctuations to provide richer insights. Specifically, we utilize LLM-based agents to iteratively filter out irrelevant news and employ human-like reasoning to evaluate predictions. This enables the model to analyze complex events, such as unexpected incidents and shifts in social behavior, and continuously refine the selection logic of news and the robustness of the agent's output. By integrating selected news events with time series data, we fine-tune a pre-trained LLM to predict sequences of digits in time series. The results demonstrate significant improvements in forecasting accuracy, suggesting a potential paradigm shift in time series forecasting through the effective utilization of unstructured news data.
Primary Area: Machine learning for other sciences and fields
Submission Number: 5288
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview