Fine-Tuning Pre-trained Language Models for Robust Causal Representation Learning

28 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: representation learning, causal inference, robust machine learning
TL;DR: We describe a way of identifying and constructing robust causal representations leveraging pre-trained language models.
Abstract: The fine-tuning of pre-trained language models (PLMs) has been shown to be effective across various domains. By using domain-specific supervised data, the general-purpose representation derived from PLMs can be transformed into a domain-specific representation. However, these methods often fail to generalize to out-of-domain (OOD) data due to their reliance on $\textit{non-causal}$ representations, often described as spurious features. Existing methods either make use of adjustments with strong assumptions about lack of hidden common causes, or mitigate the effect of spurious features using multi-domain data. In this work, we investigate how fine-tuned pre-trained language models aid generalizability from single-domain scenarios under mild assumptions, targeting more general and practical real-world scenarios. We show that a robust representation can be derived through a so-called causal front-door adjustment, based on a $\textit{decomposition}$ assumption, using fine-tuned representations as a source of data augmentation. Comprehensive experiments in both synthetic and real-world settings demonstrate the superior generalizability of the proposed method compared to existing approaches. Our work thus sheds light on the domain generalization problem by introducing links between fine-tuning and causal mechanisms into representation learning.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 14004
Loading