KGARevion: An AI Agent for Knowledge-Intensive Biomedical QA

Published: 22 Jan 2025, Last Modified: 03 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Medical Reasoning, Medical QA, Agent, Knowledge Graph, LLM
TL;DR: A knowledge graph based agent for knowledge-intensive biomedical question answering
Abstract: Biomedical reasoning integrates structured, codified knowledge with tacit, experience-driven insights. Depending on the context, quantity, and nature of available evidence, researchers and clinicians use diverse strategies, including rule-based, prototype-based, and case-based reasoning. Effective medical AI models must handle this complexity while ensuring reliability and adaptability. We introduce KGARevion, a knowledge graph-based agent that answers knowledge-intensive questions. Upon receiving a query, KGARevion generates relevant triplets by leveraging the latent knowledge embedded in a large language model. It then verifies these triplets against a grounded knowledge graph, filtering out errors and retaining only accurate, contextually relevant information for the final answer. This multi-step process strengthens reasoning, adapts to different models of medical inference, and outperforms retrieval-augmented generation-based approaches that lack effective verification mechanisms. Evaluations on medical QA benchmarks show that KGARevion improves accuracy by over 5.2% over 15 models in handling complex medical queries. To further assess its effectiveness, we curated three new medical QA datasets with varying levels of semantic complexity, where KGARevion improved accuracy by 10.4%. The agent integrates with different LLMs and biomedical knowledge graphs for broad applicability across knowledge-intensive tasks. We evaluated KGARevion on AfriMed-QA, a newly introduced dataset focused on African healthcare, demonstrating its strong zero-shot generalization to underrepresented medical contexts.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11401
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview