Abstract: Cognitive diagnosis is crucial for intelligent education because of its ability to reveal students' proficiency in knowledge concepts. Although neural network-based neural cognitive diagnosis models (CDMs) have exhibited significantly better performance than traditional models, neural cognitive diagnosis is criticized for the poor model interpretability due to the multi-layer perceptron(MLP) employed, even with the monotonicity assumption. Therefore, this paper proposes to empower the interpretability of neural cognitive diagnosis models through efficient Kolmogorov-Arnold networks (KANs), named KAN2CD, where KANs are used to enhance interpretability in two manners. Specifically, in the first manner, KANs are directly used to replace the used MLPs in existing neural CDMs; while in the second manner, the student embedding, exercise embedding, and concept embedding are directly processed by several KANs, and then their outputs are further combined and learned in a unified KAN to get final predictions. Besides, the implementation of original KANs is modified without affecting the interpretability to overcome the problem of training KANs slowly. Extensive experiments show KAN2CD outperforms traditional CDMs and slightly surpasses existing neural CDMs, and its learned structures ensure interpretability on par with traditional CDMs and better than neural CDMs. The datasets, associated code, and more experimental results are available at https://github.com/null233QAQ/KAN2CD.
External IDs:dblp:conf/ijcai/YangQY0YM025
Loading