A Coefficient Makes SVRG Effective

ICLR 2025 Conference Submission411 Authors

13 Sept 2024 (modified: 24 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Optimization; Variance Reduction; SGD
TL;DR: Introducing a coefficient to control the variance reduction strength in SVRG makes it effective for deep networks.
Abstract: Stochastic Variance Reduced Gradient (SVRG), introduced by Johnson & Zhang (2013), is a theoretically compelling optimization method. However, as Defazio & Bottou (2019) highlight, its effectiveness in deep learning is yet to be proven. In this work, we demonstrate the potential of SVRG in optimizing real-world neural networks. Our empirical analysis finds that, for deeper neural networks, the strength of the variance reduction term in SVRG should be smaller and decrease as training progresses. Inspired by this, we introduce a multiplicative coefficient $\alpha$ to control the strength and adjust it through a linear decay schedule. We name our method $\alpha$-SVRG. Our results show $\alpha$-SVRG better optimizes models, consistently reducing training loss compared to the baseline and standard SVRG across various model architectures and multiple image classification datasets. We hope our findings encourage further exploration into variance reduction techniques in deep learning.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 411
Loading