Developmental Self-Construction and -Configuration of Functional Neocortical Neuronal NetworksDownload PDFOpen Website

2014 (modified: 03 Nov 2022)PLoS Comput. Biol. 2014Readers: Everyone
Abstract: Author Summary Models of learning in artificial neural networks generally assume that the neurons and approximate network are given, and then learning tunes the synaptic weights. By contrast, we address the question of how an entire functional neuronal network containing many differentiated neurons and connections can develop from only a single progenitor cell. We chose a winner-take-all network as the developmental target, because it is a computationally powerful circuit, and a candidate motif of neocortical networks. The key aspect of this challenge is that the developmental mechanisms must be locally autonomous as in Biology: They cannot depend on global knowledge or supervision. We have explored this developmental process by simulating in physical detail the fundamental biological behaviors, such as cell proliferation, neurite growth and synapse formation that give rise to the structural connectivity observed in the superficial layers of the neocortex. These differentiated, approximately connected neurons then adapt their synaptic weights homeostatically to obtain a uniform electrical signaling activity before going on to organize themselves according to the fundamental correlations embedded in a noisy wave-like input signal. In this way the precursor expands itself through development and unsupervised learning into winner-take-all functionality and orientation selectivity in a biologically plausible manner.
0 Replies

Loading