Scaling In-the-Wild Training for Diffusion-based Illumination Harmonization and Editing by Imposing Consistent Light Transport
Keywords: diffusion model, illumination editing, image editing
TL;DR: Diffusion-based image illumination harmonization and editing model
Abstract: Diffusion-based image generators are becoming unique methods for illumination harmonization and editing. The current bottleneck in scaling up the training of diffusion-based illumination editing models is mainly in the difficulty of preserving the underlying image details and maintaining intrinsic properties, such as albedos, unchanged. Without appropriate constraints, directly training the latest large image models with complex, varied, or in-the-wild data is likely to produce a structure-guided random image generator, rather than achieving the intended goal of precise illumination manipulation. We propose Imposing Consistent Light (IC-Light) transport during training, rooted in the physical principle that the linear blending of an object's appearances under different illumination conditions is consistent with its appearance under mixed illumination. This consistency allows for stable and scalable illumination learning, uniform handling of various data sources, and facilitates a physically grounded model behavior that modifies only the illumination of images while keeping other intrinsic properties unchanged. Based on this method, we can scale up the training of diffusion-based illumination editing models to large data quantities (> 10 million), across all available data types (real light stages, rendered samples, in-the-wild synthetic augmentations, etc), and using strong backbones (SDXL, Flux, etc). We also demonstrate that this approach reduces uncertainties and mitigates artifacts such as mismatched materials or altered albedos.
Supplementary Material: pdf
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3821
Loading