Learning Label Shift Correction for Test-Agnostic Long-Tailed Recognition

19 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: long-tail learning, label shift, semi-supervised learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: This paper proposes a simple yet effective approach for tackling test label shifts in long-tail learning.
Abstract: Long-tail learning primarily focuses on mitigating the label distribution shift between long-tailed training data and uniformly distributed test data. However, in real-world applications, we often encounter a more intricate challenge where the test label distribution is agnostic. To address this problem, we first theoretically establish the substantial potential for reducing generalization error if we can precisely estimate the test label distribution. Motivated by the theoretical insight, we introduce a simple yet effective solution called label shift correction (LSC). LSC estimates the test label distribution within the proposed framework of generalized black box shift estimation, and adjusts the model predictions to align with the estimated distribution. Theoretical analyses confirm that accurate test label distribution estimates can effectively reduce the generalization error. Extensive experimental results demonstrate that our method significantly outperforms previous state-of-the-art approaches, especially when confronted with non-uniform test label distribution. Notably, the proposed method is general and complements existing long-tail learning approaches, consistently improving their performance.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1806
Loading