Off-Policy Risk Assessment in Contextual BanditsDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: off policy evaluation, contextual bandits, double robustness, cumulative distribution functions, risk functionals
Abstract: Even when unable to run experiments, practitioners can evaluate prospective policies, using previously logged data. However, while the bandits literature has adopted a diverse set of objectives, most research on off-policy evaluation to date focuses on the expected reward. In this paper, we introduce Lipschitz risk functionals, a broad class of objectives that subsumes conditional value-at-risk (CVaR), variance, mean-variance, many distorted risks, and CPT risks, among others. We propose Off-Policy Risk Assessment (OPRA), a framework that first estimates a target policy's CDF and then generates plugin estimates for any collection of Lipschitz risks, providing finite sample guarantees that hold simultaneously over the entire class. We instantiate OPRA with both importance sampling and doubly robust estimators. Our primary theoretical contributions are (i) the first uniform concentration inequalities for both CDF estimators in contextual bandits and (ii) error bounds on our Lipschitz risk estimates, which all converge at a rate of $O(1/\sqrt{n})$.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
11 Replies

Loading