SaiT: Sparse Vision Transformers through Adaptive Token PruningDownload PDF

22 Sept 2022 (modified: 25 Nov 2024)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: pruning, vision transformer, computer vision, deep learning
TL;DR: This work proposes a general dense/sparse training framework and adaptive token pruning strategies for efficient vision transformer model acceleration.
Abstract: While vision transformers have achieved impressive results, effectively and efficiently accelerating these models can further boost performances. In this work, we propose a dense/sparse training framework to obtain a unified model, enabling weight sharing across various token densities. Thus one model offers a range of accuracy and throughput tradeoffs for different applications. Besides, we introduce adaptive token pruning to optimize the patch token sparsity based on the input image. In addition, we investigate knowledge distillation to enhance token selection capability in early transformer modules. Sparse adaptive image Transformer (SaiT) offers varying levels of model acceleration by merely changing the token sparsity on the fly. Specifically, SaiT reduces the computation complexity (FLOPs) by 39% - 43% and increases the throughput by 67% - 91% with less than 0.5% accuracy loss for various vision transformer models. Meanwhile, the same model also provides the zero accuracy drop option by skipping the sparsification step. SaiT achieves better accuracy and computation tradeoffs than state-of-the-art transformer and convolutional models.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/sait-sparse-vision-transformers-through/code)
5 Replies

Loading