Jailbreaking as a Reward Misspecification Problem

ICLR 2025 Conference Submission756 Authors

14 Sept 2024 (modified: 22 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large language models, alignment, jailbreaking
TL;DR: This paper reframes jailbreaking as a reward misspecification problem and introduces novel methods to quantify and exploit these misspecifications in aligned language models.
Abstract: The widespread adoption of large language models (LLMs) has raised concerns about their safety and reliability, particularly regarding their vulnerability to adversarial attacks. In this paper, we propose a new perspective that attributes this vulnerability to reward misspecification during the alignment process. This misspecification occurs when the reward function fails to accurately capture the intended behavior, leading to misaligned model outputs. We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness and robustness in detecting harmful backdoor prompts. Building upon these insights, we present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space. ReMiss achieves state-of-the-art attack success rates on the AdvBench benchmark against various target aligned LLMs while preserving the human readability of the generated prompts. Furthermore, these attacks on open-source models demonstrate high transferability to closed-source models like GPT-4o and out-of-distribution tasks from HarmBench. Detailed analysis highlights the unique advantages of the proposed reward misspecification objective compared to previous methods, offering new insights for improving LLM safety and robustness.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 756
Loading