Hierarchical Modeling for Task Recognition and Action Segmentation in Weakly-Labeled Instructional VideosDownload PDFOpen Website

2022 (modified: 13 Nov 2022)WACV 2022Readers: Everyone
Abstract: This paper <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> focuses on task recognition and action segmentation in weakly-labeled instructional videos, where only the ordered sequence of video-level actions is available during training. We propose a two-stream framework, which exploits semantic and temporal hierarchies to recognize top-level tasks in instructional videos. Further, we present a novel top-down weakly-supervised action segmentation approach, where the predicted task is used to constrain the inference of fine-grained action sequences. Experimental results on the popular Breakfast and Cooking 2 datasets show that our two-stream hierarchical task modeling significantly outperforms existing methods in top-level task recognition for all datasets and metrics. Additionally, using our task recognition framework in the proposed top-down action segmentation approach consistently improves the state of the art, while also reducing segmentation inference time by 80-90 percent.
0 Replies

Loading