Stable interpolation with exponential-polynomial splines and node selection via greedy algorithms

Published: 01 Jan 2022, Last Modified: 29 Sept 2024Adv. Comput. Math. 2022EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In this work we extend some ideas about greedy algorithms, which are well-established tools for, e.g., kernel bases, and exponential-polynomial splines whose main drawback consists in possible overfitting and consequent oscillations of the approximant. To partially overcome this issue, we develop some results on theoretically optimal interpolation points. Moreover, we introduce two algorithms which perform an adaptive selection of the spline interpolation points based on the minimization either of the sample residuals (f-greedy), or of an upper bound for the approximation error based on the spline Lebesgue function (\(\lambda\)-greedy). Both methods allow us to obtain an adaptive selection of the sampling points, i.e., the spline nodes. While the f-greedy selection is tailored to one specific target function, the \(\lambda\)-greedy algorithm enables us to define target-data-independent interpolation nodes.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview