Score-based Self-supervised MRI Denoising

ICLR 2025 Conference Submission13077 Authors

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Self-supervised Learning; Score-based denoising; Medical Image Denoising
Abstract: Magnetic resonance imaging (MRI) is a powerful noninvasive diagnostic imaging tool that provides unparalleled soft tissue contrast and anatomical detail. Noise contamination, especially in accelerated and/or low-field acquisitions, can significantly degrade image quality and diagnostic accuracy. Supervised learning based denoising approaches have achieved impressive performance but require high signal-to-noise ratio (SNR) labels, which are often unavailable. Self-supervised learning holds promise to address the label scarcity issue, but existing self-supervised denoising methods tend to oversmooth fine spatial features and often yield inferior performance than supervised methods. We introduce Corruption2Self (C2S), a novel score-based self-supervised framework for MRI denoising. At the core of C2S is a generalized ambient denoising score matching (GADSM) loss, which extends denoising score matching to the ambient noise setting by modeling the conditional expectation of higher-SNR images given further corrupted observations. This allows the model to effectively learn denoising across multiple noise levels directly from noisy data. Additionally, we incorporate a reparameterization of noise levels to stabilize training and enhance convergence, and introduce a detail refinement extension to balance noise reduction with the preservation of fine spatial features. Moreover, C2S can be extended to multi-contrast denoising by leveraging complementary information across different MRI contrasts. We demonstrate that our method achieves state-of-the-art performance among self-supervised methods and competitive results compared to supervised counterparts across varying noise conditions and MRI contrasts on the M4Raw and fastMRI dataset.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13077
Loading