Keywords: Generalized Denoising Score Matching; Self-supervised Learning; Self-supervised Denoising; Score-based denoising; Medical Image Denoising;
TL;DR: Corruption2Self introduces a score-based self-supervised MRI denoising framework that leverages Generalized Denoising Score Matching (GDSM) to achieve high-quality denoising without clean reference images.
Abstract: Magnetic resonance imaging (MRI) is a powerful noninvasive diagnostic imaging tool that provides unparalleled soft tissue contrast and anatomical detail. Noise contamination, especially in accelerated and/or low-field acquisitions, can significantly degrade image quality and diagnostic accuracy. Supervised learning based denoising approaches have achieved impressive performance but require high signal-to-noise ratio (SNR) labels, which are often unavailable. Self-supervised learning holds promise to address the label scarcity issue, but existing self-supervised denoising methods tend to oversmooth fine spatial features and often yield inferior performance than supervised methods. We introduce Corruption2Self (C2S), a novel score-based self-supervised framework for MRI denoising. At the core of C2S is a generalized denoising score matching (GDSM) loss, which extends denoising score matching to work directly with noisy observations by modeling the conditional expectation of higher-SNR images given further corrupted observations. This allows the model to effectively learn denoising across multiple noise levels directly from noisy data. Additionally, we incorporate a reparameterization of noise levels to stabilize training and enhance convergence, and introduce a detail refinement extension to balance noise reduction with the preservation of fine spatial features. Moreover, C2S can be extended to multi-contrast denoising by leveraging complementary information across different MRI contrasts. We demonstrate that our method achieves state-of-the-art performance among self-supervised methods and competitive results compared to supervised counterparts across varying noise conditions and MRI contrasts on the M4Raw and fastMRI dataset. The project website is available at: https://jiachentu.github.io/Corruption2Self-Self-Supervised-Denoising/.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13077
Loading