Keywords: Cryo-ET, EBMs, Cryogenic Electron Tomography, Generative Energy-based Model
Abstract: Cryogenic electron tomography (Cryo-ET) is a powerful technique for visualizing subcellular structures in their native states. Nonetheless, its effectiveness is compromised by anisotropic resolution artifacts caused by the missing-wedge effect. To address this, IsoNet, a deep learning-based method, proposes iteratively reconstructing the missing-wedge information. While successful, IsoNet's dependence on recursive prediction updates often leads to training instability and model divergence. In this study, we introduce CryoGEN—an energy-based probabilistic model that not only mitigates resolution anisotropy but also removes the need for recursive subtomogram averaging, delivering an approximate *10*$\times$ speedup for training. Evaluations across various biological datasets, including immature HIV-1 virions and ribosomes, demonstrate that CryoGEN significantly enhances structural completeness and interpretability of the reconstructed samples.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9836
Loading