HELIOS: Harmonizing Early Fusion, Late Fusion, and LLM Reasoning for Multi-Granular Table-Text Retrieval

ACL ARR 2025 February Submission706 Authors

10 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Table-text retrieval aims to retrieve relevant tables and text to support open-domain question answering. Existing studies use either early or late fusion, but face limitations. Early fusion pre-aligns a table row with its associated passages, forming ``stars," which often include irrelevant contexts and miss query-dependent relationships. Late fusion retrieves individual nodes, dynamically aligning them, but it risks missing relevant contexts. Both approaches also struggle with advanced reasoning tasks, such as column-wise aggregation and multi-hop reasoning. To address these issues, we propose HELIOS, which combines the strengths of both approaches. First, the edge-based bipartite subgraph retrieval identifies finer-grained edges between table segments and passages, effectively avoiding the inclusion of irrelevant contexts. Then, the query-relevant node expansion identifies the most promising nodes, dynamically retrieving relevant edges to grow the bipartite subgraph, minimizing the risk of missing important contexts. Lastly, the star-based LLM refinement performs logical inference at the star graph level rather than the bipartite subgraph, supporting advanced reasoning tasks. Experimental results show that HELIOS outperforms state-of-the-art models with a significant improvement up to 42.6% and 39.9% in recall and nDCG, respectively, on the OTT-QA benchmark.
Paper Type: Long
Research Area: Question Answering
Research Area Keywords: multihop QA, open-domain QA, table QA, passage retrieval
Contribution Types: NLP engineering experiment
Languages Studied: English
Submission Number: 706
Loading