Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: large language model, context compression, in-context autoencoder, pretraining, fine-tuning, Llama, GPT, memorization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A paper proposing a novel approach called In-context Autoencoder (ICAE) for LLM context compression
Abstract: We propose the In-context Autoencoder (ICAE), leveraging the power of a large language model (LLM) to compress a long context into short compact memory slots that can be directly conditioned on by the LLM for various purposes. ICAE is first pretrained using both autoencoding and language modeling objectives on massive text data, enabling it to generate memory slots that accurately and comprehensively represent the original context. Then, it is fine-tuned on instruction data for producing desirable responses to various prompts. Experiments demonstrate that our lightweight ICAE, introducing about 1% additional parameters, effectively achieves $4\times$ context compression based on Llama, offering advantages in both improved latency and GPU memory cost during inference, and showing an interesting insight in memorization as well as potential for scalability. These promising results imply a novel perspective on the connection between working memory in cognitive science and representation learning in LLMs, revealing ICAE's significant implications in addressing the long context problem and suggesting further research in LLM context management. Our data, code and models are available at https://github.com/getao/icae.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 9031
Loading