Keywords: contrastive learning, multimodal representation learning, theoretical analysis, InfoNCE, pointwise mutual information
TL;DR: We propose a new multimodal representation learning method and theoretically show benefits of our method.
Abstract: In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in the real world. For richer classes of the similarity, we propose the use of weighted point clouds, namely, sets of pairs of weight and vector, as representations of instances. In this work, we theoretically show the benefit of our proposed method through a new understanding of the contrastive loss of CLIP, which we call symmetric InfoNCE. We clarify that the optimal similarity
that minimizes symmetric InfoNCE is the pointwise mutual information, and show an upper bound of excess risk on downstream classification tasks of representations that achieve the optimal similarity. In addition, we show that our proposed similarity based on weighted point clouds consistently achieves the optimal similarity. To verify the effectiveness of our proposed method, we demonstrate pretraining of text-image representation models and classification tasks on common benchmarks.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10847
Loading