Keywords: Protein design, Protein Language Models, Preference Learning, Extrapolation, Data distillation
TL;DR: Steering protein design in the extrapolation region by using data distillation through preference optimization.
Abstract: The goal of protein design typically involves increasing fitness (extrapolating) beyond what is seen during training (e.g., towards higher stability, stronger binding affinity, etc.). State-of-the-art methods assume that one can safely steer proteins towards such extrapolated regions by learning from pairs alone. We hypothesize that noisy training pairs are not sufficiently informative to capture the fitness gradient and that models learned from pairs specifically may fail to capture three-way relations important for search, e.g., how two alternatives fair relative to a seed. Building on the success of preference alignment models in large language models, we introduce a progressive search method for extrapolative protein design by directly distilling into the model relevant triplet relations. We evaluated our model's performance in designing AAV and GFP proteins and demonstrated that the proposed framework significantly improves effectiveness in extrapolation tasks.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4010
Loading