Abstract: We introduce Conic Linear Unit (CoLU), a natural generalization of commonly used activation functions in neural networks. The common pointwise ReLU activation is a projection onto the positive cone and is permutation symmetric. We propose a nonlinearity that goes beyond this symmetry: CoLU is a skew projection onto a hypercone towards the cone’s axis. Due to the nature of this projection, CoLU enforces symmetry in a neural network with width C from the finite-order permutation group S(C) to the infinite-order rotation/reflection group O(C− 1), thus producing deep features that are motivated by the HSV color representation. Recent results on merging independent neural networks via permutation modulus can be relaxed and generalized to soft alignment modulo an optimal transport plan (Singh and Jaggi, 2020), which is useful in aligning models of different widths. CoLU aims to further alleviate the apparent deficiency of soft alignment. Our simulation indicates that CoLU outperforms exist
Loading