Abstract: Popularity bias is a common challenge in recommender systems. It often causes unbalanced item recommendation performance and intensifies the Matthew effect. Due to limited user-item interactions, unpopular items are frequently constrained to the embedding neighborhoods of only a few users, leading to representation collapse and weakening the model's generalization. Although existing supervised alignment and reweighting methods can help mitigate this problem, they still face two major limitations: (1) they overlook the inherent variability among different Graph Convolutional Networks (GCNs) layers, which can result in negative gains in deeper layers; (2) they rely heavily on fixed hyperparameters to balance popular and unpopular items, limiting adaptability to diverse data distributions and increasing model complexity. To address these challenges, we propose Graph-Structured Dual Adaptation Framework (GSDA), a dual adaptive framework for mitigating popularity bias in recommendation. Our theoretical analysis shows that supervised alignment in GCNs is hindered by the over-smoothing effect, where the distinction between popular and unpopular items diminishes as layers deepen, reducing the effectiveness of alignment at deeper levels. To overcome this limitation, GSDA integrates a hierarchical adaptive alignment mechanism that counteracts entropy decay across layers together with a distribution-aware contrastive weighting strategy based on the Gini coefficient, enabling the model to adapt its debiasing strength dynamically without relying on fixed hyperparameters. Extensive experiments on three benchmark datasets demonstrate that GSDA effectively alleviates popularity bias while consistently outperforming state-of-the-art methods in recommendation performance.
External IDs:dblp:journals/corr/abs-2503-23358
Loading