Invariant Federated Learning for Edge Intelligence: Mitigating Heterogeneity and Asynchrony via Exit Strategy and Invariant Penalty

Published: 01 Jan 2025, Last Modified: 15 May 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This paper provides an invariant federated learning system for resource-constrained edge intelligence. This framework can mitigate the impact of heterogeneity and asynchrony via exit strategy and invariant penalty. We introduce parameter orthogonality into edge intelligence to measure the contribution or impact of heterogeneous and asynchronous clients. It is proved in this paper that the exit of abnormal edge clients can guarantee the effect of the model on most clients. Meanwhile, to ensure the models' performance on exited abnormal clients and those who lack training resources, we propose Federated Learning with Invariant Penalty for Generalization (FedIPG) by constructing the approximate orthogonality of the invariant parameters and the heterogeneous parameters. Theoretical proof shows that FedIPG reduces the Out-Of-Distribution prediction loss without increasing the communication burden. The performance of FedIPG combined with an exit strategy is tested empirically in multiple scales using four datasets. It shows our system can enhance In-Distribution performance and outperform the state-of-the-art algorithm in Out-Of-Distribution generalization while maintaining model convergence. Additionally, the results of the visual experiment prove that FedIPG contains preliminary causality in terms of ignoring confounding features.
Loading