Keywords: subset learning, theoretical neuroscience, expressive power, neural networks, recurrent neural network
TL;DR: This paper takes the first step to theoretically analyzing the expressive power of different allocation strategies in subset learning.
Abstract: In traditional machine learning, models are defined by a set of parameters, which are optimized to perform specific tasks. In neural networks, these parameters correspond to the synaptic weights. However, in reality, it is often infeasible to control or update all weights. This challenge is not limited to artificial networks but extends to biological networks, such as the brain, where the extent of distributed synaptic weight modification during learning remains unclear. Motivated by these insights, we theoretically investigate how different allocations of a fixed number of learnable weights influence the capacity of neural networks. Using a teacher-student setup, we introduce a benchmark to quantify the expressivity associated with each allocation. We establish conditions under which allocations have \`maximal' or \`minimal' expressive power in linear recurrent neural networks and linear multi-layer feedforward networks. For suboptimal allocations, we propose heuristic principles to estimate their expressivity. These principles extend to shallow ReLU networks as well. Finally, we validate our theoretical findings with empirical experiments. Our results emphasize the critical role of strategically distributing learnable weights across the network, showing that a more widespread allocation generally enhances the network’s expressive power.
Supplementary Material: zip
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9630
Loading