Bridging Neural and Symbolic Representations with Transitional Dictionary Learning

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Unsupervised Learning, Compositional representation, neural-symbolic learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: We propose Transitional Dictionary Learning to learn symbolic knowledge in representation. Experiments on abstract objects show our method largely outperforms unsupervised segmentation baselines and proposed metrics align well with human evaluations.
Abstract: This paper introduces a novel Transitional Dictionary Learning (TDL) framework that can implicitly learn symbolic knowledge, such as visual parts and relations, by reconstructing the input as a combination of parts with implicit relations. We propose a game-theoretic diffusion model to decompose the input into visual parts using the dictionaries learned by the Expectation Maximization (EM) algorithm, implemented as the online prototype clustering, based on the decomposition results. Additionally, two metrics, clustering information gain, and heuristic shape score are proposed to evaluate the model. Experiments are conducted on three abstract compositional visual object datasets, which require the model to utilize the compositionality of data instead of simply exploiting visual features. Then, three tasks on symbol grounding to predefined classes of parts and relations, as well as transfer learning to unseen classes, followed by a human evaluation, were carried out on these datasets. The results show that the proposed method discovers compositional patterns, which significantly outperforms the state-of-the-art unsupervised part segmentation methods that rely on visual features from pre-trained backbones. Furthermore, the proposed metrics are consistent with human evaluations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 2974