Sample-efficient identification of high-dimensional antibiotic synergy with a normalized diagonal sampling designDownload PDFOpen Website

2022 (modified: 18 Apr 2023)PLoS Comput. Biol. 2022Readers: Everyone
Abstract: Author summary Antibiotic resistance is a growing public health concern, and there is an increasing need for methods to combat it. One potential approach is the development of synergistic antibiotic combinations, in which a mixture of drugs is more effective than any individual component. Unfortunately, the search for clinically beneficial drug combinations is severely restricted by the pace at which drugs can be screened. To date, most studies of combination therapies have been limited to testing only pairs or triples of drugs. These studies have identified primarily antagonistic drug interactions, in which the combination is less effective than the individual components. There is an acute need for methodologies that enable screening of higher-order drug combinations, both to identify synergies among many drugs and to understand the behavior of higher-order combinations. In this work we introduce a new paradigm for combination testing, the normalized diagonal sampling design, that makes identifying interactions among eight or more drugs feasible for the first time. Screening d drugs at m different combinations requires m ⋅ 2d samples under our design as opposed to md under exhaustive screening, while provably identifying all synergies under mild assumptions about antibiotic behavior. Scientists can use our design to quickly screen for antibiotic interactions, accelerating the pace of combination therapy development.
0 Replies

Loading