Real-World Data and Calibrated Simulation Suite for Offline Training of Reinforcement Learning Agents to Optimize Energy and Emission in Buildings for Environmental Sustainability

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement Learning, HVAC Control, Simulator, RL Environment, Environmental Sustainability, Climate, Time-series prediction
TL;DR: We provide a novel dataset for Envonmental Sustainability research for HVAC control, providing real world data, as well as data-grounded simulators, of several buildings. We demonstrate baselines on several tasks of interest.
Abstract: Commercial office buildings contribute 17 percent of Carbon Emissions in the US, according to the US Energy Information Administration (EIA), and improving their efficiency will reduce their environmental burden and operating cost. A major contributor of energy consumption in these buildings are the Heating, Ventilation, and Air Conditioning (HVAC) devices. HVAC devices form a complex and interconnected thermodynamic system with the building and outside weather conditions, and current setpoint control policies are not fully optimized for minimizing energy use and carbon emission. Given a suitable training environment, a Reinforcement Learning (RL) agent is able to improve upon these policies, but training such a model, especially in a way that scales to thousands of buildings, presents many practical challenges. Most existing work on applying RL to this important task either makes use of proprietary data, or focuses on expensive and proprietary simulations that may not be grounded in the real world. We present the Smart Buildings Control Suite, the first open source interactive HVAC control dataset extracted from live sensor measurements of devices in real office buildings. The dataset consists of two components: six years of real-world historical data from three buildings, for offline RL, and a lightweight interactive simulator for each of these buildings, calibrated using the historical data, for online and model-based RL. For ease of use, our RL environments are all compatible with the OpenAI gym environment standard. We also demonstrate a novel method of calibrating the simulator, as well as baseline results on training an RL agent on the simulator, predicting real-world data, and training an RL agent directly from data. We believe this benchmark will accelerate progress and collaboration on building optimization and environmental sustainability research.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11064
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview