Learning to tell brake and turn signals in videos using CNN-LSTM structureDownload PDFOpen Website

Published: 01 Jan 2017, Last Modified: 10 Nov 2023ITSC 2017Readers: Everyone
Abstract: We present a method that learns to tell rear signals from a number of frames using a deep learning framework. The proposed framework extracts spatial features with a convolution neural network (CNN), and then applies a long short term memory (LSTM) network to learn the long-term dependencies. The brake signal classifier is trained using RGB frames, while the turn signal is recognized via a two-step localization approach. The two separate classifiers are learned to recognize the static brake signals and the dynamic turn signals. As a result, our recognition system can recognize 8 different rear signals via the combined two classifiers in real-world traffic scenes. Experimental results show that our method is able to obtain more accurate predictions than using only the CNN to classify rear signals with time sequence inputs.
0 Replies

Loading