Abstract: Accessing large-scale structured datasets such as WDC or CORD-191 is very challenging. Even if one topic (e.g. COVID-19 vaccine efficacy) is of interest, all topical tables in different sources/papers have hundreds of different schemas, depending on the authors, which significantly complicates both finding and querying them. Here we demonstrate a scalable Meta-profiler system, capable of constructing a structured standardized interface to a topic of interest in large-scale (semi-)structured datasets. This interface, that we call Meta-profile represents a multi-dimensional meta-data summary for a selected topic of interest, accumulating all differently structured representations of the topical tables in the dataset. Such Meta-profiles can be used as a rich visualization as well as a robust structural query interface simplifying access to large-scale (semi-)structured data for different user segments, such as data scientists and end users.
0 Replies
Loading