Schur's Positive-Definite Network: Deep Learning in the SPD cone with structure

Published: 22 Jan 2025, Last Modified: 26 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: sparsity, graphical lasso, lasso, deep learning, neural networks
TL;DR: We propose a novel and generic learning module with guaranteed SPD outputs that can jointly handle additional structural constraints such as sparsity.
Abstract: Estimating matrices in the symmetric positive-definite (SPD) cone is of interest for many applications ranging from computer vision to graph learning. While there exist various convex optimization-based estimators, they remain limited in expressivity due to their model-based approach. The success of deep learning motivates the use of learning-based approaches to estimate SPD matrices with neural networks in a data-driven fashion. However, designing effective neural architectures for SPD learning is challenging, particularly when the task requires additional structural constraints, such as element-wise sparsity. Current approaches either do not ensure that the output meets all desired properties or lack expressivity. In this paper, we introduce SpodNet, a novel and generic learning module that guarantees SPD outputs and supports additional structural constraints. Notably, it solves the challenging task of learning jointly SPD and sparse matrices. Our experiments illustrate the versatility and relevance of SpodNet layers for such applications.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10044
Loading