Abstract: In recent years, many incomplete multi-view clustering methods have been proposed to address the challenging unsupervised clustering issue on the multi-view data with missing views. However, most of the existing works are inapplicable to large-scale clustering task and their clustering results are unstable since these methods have high computational complexities and their results are produced by kmeans rather than their designed learning models. In this paper, we propose a new one-step incomplete multi-view clustering model, called Localized and Balanced Incomplete Multi-view Clustering (LBIMVC), to address these issues. Specifically, LBIMVC develops a new graph regularized incomplete multi-matrix-factorization model to obtain the unique clustering result by learning a consensus probability representation, where each element of the consensus representation can directly reflect the probability of the corresponding sample to the class. In addition, the proposed graph regularized model integrates geometric preserving and consensus representation learning into one term without introducing any extra constraint terms and parameters to explore the structure of data. Moreover, to avoid that samples are over divided into a few clusters, a balanced constraint is introduced to the model. Experimental results on four databases demonstrate that our method not only obtains competitive clustering performance, but also performs faster than some state-of-the-art methods.
0 Replies
Loading