Vision-Language Navigation with Energy-Based Policy

Published: 25 Sept 2024, Last Modified: 19 Dec 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Vision-Language Navigation; Vision-Language; Embodied vision
Abstract: Vision-language navigation (VLN) requires an agent to execute actions following human instructions. Existing VLN models are optimized through expert demonstrations by supervised behavioural cloning or incorporating manual reward engineering. While straightforward, these efforts overlook the accumulation of errors in the Markov decision process, and struggle to match the distribution of the expert policy. Going beyond this, we propose an Energy-based Navigation Policy (ENP) to model the joint state-action distribution using an energy-based model. At each step, low energy values correspond to the state-action pairs that the expert is most likely to perform, and vice versa. Theoretically, the optimization objective is equivalent to minimizing the forward divergence between the occupancy measure of the expert and ours. Consequently, ENP learns to globally align with the expert policy by maximizing the likelihood of the actions and modeling the dynamics of the navigation states in a collaborative manner. With a variety of VLN architectures, ENP achieves promising performances on R2R, REVERIE, RxR, and R2R-CE, unleashing the power of existing VLN models.
Primary Area: Robotics
Submission Number: 1291
Loading