DEAN: Deactivating the Coupled Neurons to Mitigate Fairness-Privacy Conflicts in Large Language Models
Keywords: Large Language Models, Fairness, Privacy
Abstract: Ensuring awareness of fairness and privacy in Large Language Models (LLMs) is critical. Interestingly, we discover a counter-intuitive trade-off phenomenon that enhancing an LLM's privacy awareness through Supervised Fine-Tuning (SFT) methods significantly decreases its fairness awareness with thousands of samples. To address this issue, inspired by the information theory, we introduce a training-free method to \textbf{DEA}ctivate the fairness and privacy coupled \textbf{N}eurons (\textbf{DEAN}), which theoretically and empirically decrease the mutual information between fairness and privacy awareness. Extensive experimental results demonstrate that DEAN eliminates the trade-off phenomenon and significantly improves LLMs' fairness and privacy awareness simultaneously, \eg improving Qwen-2-7B-Instruct's fairness awareness by 12.2\% and privacy awareness by 14.0\%.
More crucially, DEAN remains robust and effective with limited annotated data or even when only malicious fine-tuning data is available, whereas SFT methods may fail to perform properly in such scenarios. We hope this study provides valuable insights into concurrently addressing fairness and privacy concerns in LLMs and can be integrated into comprehensive frameworks to develop more ethical and responsible AI systems. Our code is provided in the supplementary materials.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 621
Loading