Hybrid Fourier Score Distillation for Efficient One Image to 3D Object Generation

26 Sept 2024 (modified: 13 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: 3D Generation, One Image to 3D Generation
TL;DR: Using both 2D and 3D generation priors to generate 3D from a single image with hybrid fourier score distillation
Abstract: Single image-to-3D generation is pivotal for crafting controllable 3D assets. Given its under-constrained nature, we attempt to leverage 3D geometric priors from a novel view diffusion model and 2D appearance priors from an image generation model to guide the optimization process. We note that there is a disparity between the generation priors of these two diffusion models, leading to their different appearance outputs. Specifically, image generation models tend to deliver more detailed visuals, whereas novel view models produce consistent yet over-smooth results across different views. Directly combining them leads to suboptimal effects due to their appearance conflicts. Hence, we propose a 2D-3D **hy**brid **F**ourier **S**core **D**istillation objective function, **hy-FSD**. It optimizes 3D Gaussians using 3D priors in spatial domain to ensure geometric consistency, while exploiting 2D priors in the frequency domain through Fourier transform for better visual quality. hy-FSD can be integrated into existing 3D generation methods and produce significant performance gains. With this technique, we further develop an image-to-3D generation pipeline to create high-quality 3D objects within one minute, named **Fourier123**. Extensive experiments demonstrate that Fourier123 excels in efficient generation with rapid convergence speed and visually-friendly generation results.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5646
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview