Reducing Storage Requirement in Blockchain Networks Using Overlapping Data DistributionOpen Website

2020 (modified: 20 Sept 2021)ICBC 2020Readers: Everyone
Abstract: Blockchain technology first gained attention via public blockchain platforms like Bitcoin and Etherium. Over the years, researchers have continuously explored the potential of blockchains in a more restricted environment, which in turn has paved the way for the creation of many private blockchain platforms. In a private blockchain system, the identity of every entity is known and thus, the issue of trust is less prominent. In addition to the added customizability of permissions regarding who gets to do what, private blockchains also reduce the resource requirement as no proof-of-work is needed here. However, each node in a private blockchain network still needs to store the whole blockchain consisting of all the transactions from the beginning. If the number of transactions in a private blockchain network rises to a very large number, the storage requirement can rise proportionately. In addition to that, public blockchain platforms like Bitcoin and Etherium are already in need of storage optimizations because of their size. We propose a method to divide the whole blockchain of transactions into some non-overlapping shards and make multiple copies of them. Then, we distribute these shards uniformly across the nodes in the network. We show theoretically that this approach not only improves the storage requirement but also ensures the integrity of the data in blockchain in case of node failures.
0 Replies

Loading