Beyond Canonicalization: How Tensorial Messages Improve Equivariant Message Passing

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: equivariance, message passing, tensor representation, local frames, geometric deep learning
Abstract: In numerous applications of geometric deep learning, the studied systems exhibit spatial symmetries and it is desirable to enforce these. For the symmetry of global rotations and reflections, this means that the model should be equivariant with respect to the transformations that form the group of $\mathrm O(d)$. While many approaches for equivariant message passing require specialized architectures, including non-standard normalization layers or non-linearities, we here present a framework based on local reference frames ("local canonicalization") which can be integrated with any architecture without restrictions. We enhance equivariant message passing based on local canonicalization by introducing tensorial messages to communicate geometric information consistently between different local coordinate frames. Our framework applies to message passing on geometric data in Euclidean spaces of arbitrary dimension. We explicitly show how our approach can be adapted to make a popular existing point cloud architecture equivariant. We demonstrate the superiority of tensorial messages and achieve state-of-the-art results on normal vector regression and competitive results on other standard 3D point cloud tasks.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2619
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview