Serving DBpedia with DOLCE - More than Just Adding a Cherry on Top

Published: 01 Jan 2015, Last Modified: 18 Nov 2024ISWC (1) 2015EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Large knowledge bases, such as DBpedia, are most often created heuristically due to scalability issues. In the building process, both random as well as systematic errors may occur. In this paper, we focus on finding systematic errors, or anti-patterns, in DBpedia. We show that by aligning the DBpedia ontology to the foundational ontology DOLCE-Zero, and by combining reasoning and clustering of the reasoning results, errors affecting millions of statements can be identified at a minimal workload for the knowledge base designer.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview