Abstract: This paper presents a novel clustering approach that utilizes variational autoencoders (VAEs) with disentangled representations, enhancing the efficiency and effectiveness of clustering. Traditional VAE-based clustering models often conflate generative and clustering information, leading to suboptimal clustering performance. To overcome this, our model distinctly separates latent representations into two modules: one for clustering and another for generation. This separation significantly improves clustering performance. Additionally, we employ augmented data to maximize mutual information between cluster assignment variables and the optimized latent variables. This strategy not only enhances clustering effectiveness but also allows the construction of latent variables that synergistically combine clustering information from original data with generative information from augmented data. Through extensive experiments, our model demonstrates superior clustering performance without the need for pre-training, outperforming existing deep generative clustering models. Moreover, it achieves state-of-the-art clustering accuracy on certain datasets, surpassing models that require pre-training.
Loading