Synchronization dependent on spatial structures of a mesoscopic whole-brain networkDownload PDFOpen Website

Published: 01 Jan 2019, Last Modified: 12 May 2023PLoS Comput. Biol. 2019Readers: Everyone
Abstract: Author summary In a previous study, a data-driven large-scale model of mouse brain connectivity was constructed. This mouse brain connectivity model is estimated by a simplified model which only takes in account anatomy and distance dependence of connection strength which is best fit by a power law. The distance dependence model captures the connection strengths of the mouse whole-brain network well. But can it capture the dynamics? In this study, we show that a small number of connections which are missed by the simple spatial model lead to significant differences in dynamics. The presence of a small number of strong connections over longer distances increases sensitivity of synchronization to perturbations. Unlike the data-driven network, the network without these long-range connections, as well as the network in which these long range connections are shuffled, lose global synchronization while maintaining localized synchrony, underlining the significance of the exact topology of these distal connections in the data-driven brain network.
0 Replies

Loading