Demystifying Numerosity in Diffusion Models — Limitations and Remedies

ICLR 2026 Conference Submission13373 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Text-to-Image Generation Model, Diffusion, Counting, Numerosity
TL;DR: Demystifying Numerosity in Diffusion Models
Abstract: Numerosity remains a challenge for state-of-the-art text-to-image generation models like FLUX and GPT-4o, which often fail to accurately follow counting instructions in text prompts. In this paper, we aim to study a fundamental yet often overlooked question: Can diffusion models inherently generate the correct number of objects specified by a textual prompt simply by scaling up the dataset and model size? To enable rigorous and reproducible evaluation, we construct a clean synthetic numerosity benchmark comprising two complementary datasets: GrayCount250 for controlled scaling studies, and NaturalCount6 featuring complex naturalistic scenes. Second, we empirically show that the scaling hypothesis does not hold: larger models and datasets alone fail to improve counting accuracy on our benchmark. Our analysis identifies a key reason: diffusion models tend to rely heavily on the noise initialization rather than the explicit numerosity specified in the prompt. We observe that noise priors exhibit biases toward specific object counts. In addition, we propose an effective strategy for controlling numerosity by injecting count-aware layout information into the noise prior. Our method achieves significant gains, improving accuracy on GrayCount250 from 20.0\% to 85.3\% and on NaturalCount6 from 74.8\% to 86.3\%, demonstrating effective generalization across settings.
Supplementary Material: zip
Primary Area: generative models
Submission Number: 13373
Loading