Multi-Stage Hybrid Federated Learning Over Large-Scale D2D-Enabled Fog NetworksDownload PDFOpen Website

2022 (modified: 17 Apr 2023)IEEE/ACM Trans. Netw. 2022Readers: Everyone
Abstract: Federated learning has generated significant interest, with nearly all works focused on a “star” topology where nodes/devices are each connected to a central server. We migrate away from this architecture and extend it through the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">network</i> dimension to the case where there are multiple layers of nodes between the end devices and the server. Specifically, we develop multi-stage hybrid federated learning ( <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MH-FL</monospace> ), a hybrid of intra-and inter-layer model learning that considers the network as a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">multi-layer cluster-based structure.</i> <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MH-FL</monospace> considers the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">topology structures</i> among the nodes in the clusters, including local networks formed via device-to-device (D2D) communications, and presumes a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">semi-decentralized architecture</i> for federated learning. It orchestrates the devices at different network layers in a collaborative/cooperative manner (i.e., using D2D interactions) to form <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">local consensus</i> on the model parameters and combines it with multi-stage parameter relaying between layers of the tree-shaped hierarchy. We derive the upper bound of convergence for <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MH-FL</monospace> with respect to parameters of the network topology (e.g., the spectral radius) and the learning algorithm (e.g., the number of D2D rounds in different clusters). We obtain a set of policies for the D2D rounds at different clusters to guarantee either a finite optimality gap or convergence to the global optimum. We then develop a distributed control algorithm for <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MH-FL</monospace> to tune the D2D rounds in each cluster over time to meet specific convergence criteria. Our experiments on real-world datasets verify our analytical results and demonstrate the advantages of <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MH-FL</monospace> in terms of resource utilization metrics.
0 Replies

Loading