Abstract: Most modern imaging systems process the data they capture computationally, either to make the measurement more interpretable for human viewing or to analyze it without a human in the loop. As a result, what matters is not how measurements appear visually, but how much information they contain. Information theory provides mathematical tools to quantify this; however, it has found limited use in imaging system design due to the challenge of developing methods that can handle the complexity of real-world measurements yet remain practical enough for widespread use. We introduce a data-driven approach for estimating the information content of imaging system measurements in order to evaluate system performance and optimize designs. Our framework requires only a dataset of experimental measurements and a means for noise characterization, enabling its use in real systems without ground truth data. We validate that these information estimates reliably predict system performance across diverse imaging modalities, including color photography, radio astronomy, lensless imaging, and label-free microscopy. We further introduce an optimization technique called Information-Driven Encoder Analysis Learning (IDEAL) for designing imaging systems that maximize information capture. This work unlocks information theory as a powerful, practical tool for analyzing and designing imaging systems across a broad range of applications. A video summarizing this work can be found at https://waller-lab.github.io/EncodingInformationWebsite/
Loading