Difficulty-Controllable Neural Question Generation for Reading Comprehension using Item Response Theory

Published: 01 Jan 2023, Last Modified: 20 May 2025BEA@ACL 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Question generation (QG) for reading comprehension, a technology for automatically generating questions related to given reading passages, has been used in various applications, including in education. Recently, QG methods based on deep neural networks have succeeded in generating fluent questions that are pertinent to given reading passages. One example of how QG can be applied in education is a reading tutor that automatically offers reading comprehension questions related to various reading materials. In such an application, QG methods should provide questions with difficulty levels appropriate for each learner’s reading ability in order to improve learning efficiency. Several difficulty-controllable QG methods have been proposed for doing so. However, conventional methods focus only on generating questions and cannot generate answers to them. Furthermore, they ignore the relation between question difficulty and learner ability, making it hard to determine an appropriate difficulty for each learner. To resolve these problems, we propose a new method for generating question–answer pairs that considers their difficulty, estimated using item response theory. The proposed difficulty-controllable generation is realized by extending two pre-trained transformer models: BERT and GPT-2.
Loading