EditInfinity: Image Editing with Binary-Quantized Generative Models

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Image Editing; Text-to-Image Generation; Autoregressive Models
Abstract: Adapting pretrained diffusion-based generative models for text-driven image editing with negligible tuning overhead has demonstrated remarkable potential. A classical adaptation paradigm, as followed by these methods, first infers the generative trajectory inversely for a given source image by image inversion, then performs image editing along the inferred trajectory guided by the target text prompts. However, the performance of image editing is heavily limited by the approximation errors introduced during image inversion by diffusion models, which arise from the absence of exact supervision in the intermediate generative steps. To circumvent this issue, we investigate the parameter-efficient adaptation of VQ-based generative models for image editing, and leverage their inherent characteristic that the exact intermediate quantized representations of a source image are attainable, enabling more effective supervision for precise image inversion. Specifically, we propose \emph{EditInfinity}, which adapts \emph{Infinity}, a binary-quantized generative model, for image editing. We propose an efficient yet effective image inversion mechanism that integrates text prompting rectification and image style preservation, enabling precise image inversion. Furthermore, we devise a holistic smoothing strategy which allows our \emph{EditInfinity} to perform image editing with high fidelity to source images and precise semantic alignment to the text prompts. Extensive experiments on the PIE-Bench benchmark across "add", "change", and "delete" editing operations, demonstrate the superior performance of our model compared to state-of-the-art diffusion-based baselines. Code available at: \url{https://github.com/yx-chen-ust/EditInfinity}.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 19759
Loading