Abstract: Virtual Reality (VR) has opened avenues for users to immerse themselves in virtual 3D environments, simulating reality across various domains like health, education, and entertainment. Haptic feedback plays a pivotal role in achieving lifelike experiences. However, the accessibility of haptic devices poses challenges, prompting the exploration of alternatives. In response, Pseudo-Haptic feedback has emerged, utilizing visual and auditory cues to create illusions or modify perceived haptic feedback. Given that many pseudo-haptic techniques are yet to be tailored for VR, our proposal involves combining and adapting multiple techniques to enhance compliance perception in virtual environments. By modifying the Mass-Spring-Damper model and incorporating hand-tracking software along with an inverse kinematics algorithm, our aim is to deliver compliance feedback through visual stimuli, thereby elevating the realism of the overall experience. The outcomes were encouraging, with numerous participants expressing their ability to easily discern various compliance levels with high confidence, all within a realistic and immersive environment. Additionally, we observed an impact of object scale on the perception of compliance in specific scenarios, as participants noted a tendency to perceive smaller objects as more compliant.
Loading