$F^3Set$: Towards Analyzing Fast, Frequent, and Fine-grained Events from Videos

Published: 22 Jan 2025, Last Modified: 03 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: temporal event spotting, fine-grained video understanding, video analytics
TL;DR: We propose a new benchmark and a method for analyzing fast, frequent, and fine-grained events from videos.
Abstract: Analyzing Fast, Frequent, and Fine-grained ($F^3$) events presents a significant challenge in video analytics and multi-modal LLMs. Current methods struggle to identify events that satisfy all the $F^3$ criteria with high accuracy due to challenges such as motion blur and subtle visual discrepancies. To advance research in video understanding, we introduce $F^3Set$, a benchmark that consists of video datasets for precise $F^3$ event detection. Datasets in $F^3Set$ are characterized by their extensive scale and comprehensive detail, usually encompassing over 1,000 event types with precise timestamps and supporting multi-level granularity. Currently, $F^3Set$ contains several sports datasets, and this framework may be extended to other applications as well. We evaluated popular temporal action understanding methods on $F^3Set$, revealing substantial challenges for existing techniques. Additionally, we propose a new method, $F^3ED$, for $F^3$ event detections, achieving superior performance. The dataset, model, and benchmark code are available at https://github.com/F3Set/F3Set.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6884
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview